M.Math. IInd year First Semestral examination 2010 Number Theory — B.Sury Answer any 6 questions including 3,6,8.

Q 1.

Let p be a prime. Show that the numerator of $\frac{n^p - n}{p} + \sum_{r=1}^{p-1} \frac{(-1)^r (1^r + 2^r + \dots + (n-1)^r)}{r}$ is a multiple of p.

Q 2.

Let p be a prime of the form 8k+3. Assume that 4k+1 is also prime. Prove that 2 is a primitive root modulo p.

OR

If p is a prime whose binary expansion looks like $100 \cdots 01$, prove that 3 is a primitive root mod p.

Q 3.

(i) Obtain the value of the periodic, simple, continued fraction $[1; \overline{2, 3}]$. (ii) Obtain the simple, continued fraction expansion of $\sqrt{a^2 + 1}$ for any natural number a.

Q 4.

Let $p = a^2 + b^2$ be an odd prime with $a \equiv 1 \mod 4$. Prove that a + b is a quadratic residue mod p if and only if $(a + b)^2 \equiv 1 \mod 16$.

OR

(i) Spell out when the Jacobi symbol $\left(\frac{a}{N}\right)$ is 1.

(ii) Let p_1, p_2, \dots, p_n be distinct, odd primes. Show the existence of a positive integer N such that the Jacobi symbol $\left(\frac{N}{p_1 p_2 \cdots p_n}\right) = -1$.

OR

Let *m* be a product of primes of the form 4t + 1 and let *n* be an arbitrary integer. Prove that $y^2 = x^3 + (4n - 1)^3 - 4m^2$ has no integral solutions.

Hint: Observe that any solution (x, y) satisfies $x \equiv 1 \mod 4$; then rewrite the equality as $y^2 + 4m^2 = x^3 + (4n-1)^3$ and show that the right side must have a prime factor $\equiv 3 \mod 4$ and derive a contradiction using quadratic reciprocity.

Q 5.

Prove that the quadratic form $7x^2 + 25xy + 23y^2$ takes the same values as the quadratic form $x^2 + xy + 5y^2$ over integers.

Q 6.

Let $d \equiv 3 \mod 4$ be square-free, positive integer. Let **O** be the ring $\mathbb{Z}[\frac{1+\sqrt{-d}}{2}]$. Determine the group of units of **O**.

Q 7.

Let f be a multiplicative function. Consider the $n \times n$ matrix A where $a_{ij} = f(GCD(i,j))$. Show that det $A = g(1)g(2)\cdots g(n)$ where $g(n) = \sum_{d|n} \mu(d) f(n/d)$.

OR

Prove that every even perfect number must be of the form $2^{p-1}(2^p-1)$ with 2^p-1 prime.

OR

Prove:

(i) $\frac{n}{\phi(n)} = \sum_{d|n} \frac{\mu(d)^2}{\phi(d)}$. (ii) $\mu(n) = \sum_{(k,n)=1} e^{2ik\pi/n}$.

Q 8.

Prove that for each $\epsilon > 0$, there exists a natural number *n* such that $\phi(n) < \epsilon n$. Deduce that $\pi(x) = o(x)$.

OR

Define $\theta(x) = \sum_{p \leq x; p \text{ prime}} \log(p), \psi(x) = \sum_{n \geq 1} \theta(x^{1/n}) \text{ and } T(x) = \sum_{n \leq x} \log(n).$ (i) Prove that $T(x) = \sum_{n \leq x} \psi(x/n).$ (ii) Prove that $\lim_{x \to \infty} \left(\frac{\theta(x)}{x} - \frac{\psi(x)}{x}\right) = 0.$

Q 9.

Using Bertrand's postulate or otherwise, prove: $n! = m^k$ does not have solutions for m, n, k > 1.

OR

Using Bertrand's postulate or otherwise, prove: Every natural number can be written as a sum of finitely many distinct primes or one more than such a number.

Q 10.

Consider the sequence defined by $u_1 = 7, u_2 = 17$ and $u_{n+2} = 5u_{n+1} - 6u_n$ for n > 0. Determine explicitly a closed expression for the u_n 's.

OR

Show that if n divides $2^n - 1$, then n = 1.